首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1640篇
  免费   161篇
  2023年   17篇
  2022年   9篇
  2021年   63篇
  2020年   36篇
  2019年   46篇
  2018年   57篇
  2017年   43篇
  2016年   67篇
  2015年   115篇
  2014年   111篇
  2013年   115篇
  2012年   158篇
  2011年   114篇
  2010年   88篇
  2009年   68篇
  2008年   95篇
  2007年   91篇
  2006年   83篇
  2005年   66篇
  2004年   63篇
  2003年   59篇
  2002年   57篇
  2001年   20篇
  2000年   13篇
  1999年   19篇
  1998年   14篇
  1997年   4篇
  1996年   12篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   7篇
  1976年   2篇
  1974年   3篇
  1971年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1801条查询结果,搜索用时 15 毫秒
101.
102.
Understanding the evolutionary dynamics of inbreeding and inbreeding depression requires unbiased estimation of inbreeding depression across diverse mating systems. However, studies estimating inbreeding depression often measure inbreeding with error, for example, based on pedigree data derived from observed parental behavior that ignore paternity error stemming from multiple mating. Such paternity error causes error in estimated coefficients of inbreeding (f) and reproductive success and could bias estimates of inbreeding depression. We used complete “apparent” pedigree data compiled from observed parental behavior and analogous “actual” pedigree data comprising genetic parentage to quantify effects of paternity error stemming from extra‐pair reproduction on estimates of f, reproductive success, and inbreeding depression in free‐living song sparrows (Melospiza melodia). Paternity error caused widespread error in estimates of f and male reproductive success, causing inbreeding depression in male and female annual and lifetime reproductive success and juvenile male survival to be substantially underestimated. Conversely, inbreeding depression in adult male survival tended to be overestimated when paternity error was ignored. Pedigree error stemming from extra‐pair reproduction therefore caused substantial and divergent bias in estimates of inbreeding depression that could bias tests of evolutionary theories regarding inbreeding and inbreeding depression and their links to variation in mating system.  相似文献   
103.
Ongoing evolution of polyandry, and consequent extra‐pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross‐sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra‐pair reproduction and male within‐pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra‐pair reproduction and male liability for within‐pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free‐living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra‐pair reproduction is facilitated by genetic covariance with male within‐pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically.  相似文献   
104.
105.
106.
107.
Caveolae are specialized compartments of the plasma membrane that are involved in signaling, endocytosis, and cholesterol transport. Their formation requires the transport of caveolin-1 to the plasma membrane, but the molecular mechanisms regulating the transport are largely unknown. Here, we?identify a critical role for adhesion-mediated signaling through β1 integrins and integrin-linked kinase (ILK) in caveolae formation. Mice lacking β1 integrins or ILK in keratinocytes have dramatically reduced numbers of plasma membrane caveolae in?vivo, which is due to impaired transport of caveolin-1-containing vesicles along microtubules (MT) to the plasma membrane. Mechanistically, ILK promotes the recruitment of the F-actin binding protein IQGAP1 to the cell cortex, which, in turn, cooperates with its?effector mDia1 to locally stabilize MTs and to allow?stable insertion of caveolae into the plasma membrane. Our results assign an important role to the integrin/ILK complex for caveolar trafficking to the cell surface.  相似文献   
108.
The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking.  相似文献   
109.
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.  相似文献   
110.
Few studies have examined exodermal development in relation to the formation of barriers to both radial oxygen loss (ROL) and solute penetration along growing roots. Here, we report on the structural development, chemical composition and functional properties of the exodermis in two diverse wetland grasses, Glyceria maxima and Phragmites australis. Anatomical features, development, the biochemical composition of exodermal suberin and the penetration of apoplastic tracers and oxygen were examined. Striking interspecific differences in exodermal structure, suberin composition and quantity per unit surface area, and developmental changes along the roots were recorded. Towards the root base, ROL and periodic acid (H(5)IO(6)) penetration were virtually stopped in P. australis; in G. maxima, a tight ROL barrier restricted but did not stop H(5)IO(6) penetration and the exodermis failed to stain with lipidic dyes. Cultivation in stagnant deep hypoxia conditions or oxygenated circulating solution affected the longitudinal pattern of ROL profiles in G. maxima but statistically significant changes in exodermal suberin composition or content were not detected. Interspecific differences in barrier performance were found to be related to hypodermal structure and probably to qualitative as well as quantitative variations in suberin composition and distribution within exodermal cell walls. Implications for root system function are discussed, and it is emphasized that sufficient spatial resolution to identify the effects of developmental changes along roots is crucial for realistic evaluation of exodermal barrier properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号